Introduction to big data

2018.06.29

Jaewoong Kang

목차

- □ 제2회 빅데이터 스쿨을 준비하며
- □ 데이터란?
- □ '빅'데이터란?
- □ 데이터 사이언티스트가 하는 5가지 업무
- □ 데이터 분석의 목적과 방법
- □ 데이터 해석의 중요성
- □ 데이터 분석을 위해 해야 하는 공부들

제2회 빅데이터 스쿨을 준비하며

☐ Ice Breaking

제2회 빅데이터 스쿨을 준비하며

- □ 올해는 Kaggle이다!
 - 우리도 남들이 한다는 거 한번 해보자!
 - 데이터 사이언티스트가 되기 위해 반드시 한번쯤은 거쳐야 할 관문!

제2회 빅데이터 스쿨을 준비하며

- □ Kaggle이란?
 - 캐글은 2010년 설립된 예측모델 및 분석 대회 플랫폼이다. 기업 및 단체에서 데이터와 해결과제를 등록하면, 데이터 과학자들이 이를 해결하는 모델을 개발하고 경쟁한다. 2017년 3월 구글에 인수되었다 위키백과
- 즉, 이번 빅데이터의 스쿨은 Not only 수학, But also 코딩!
 - Python과 함께하는 데이터 사이언스
 - 3일이면 배우는 Python (= 72시간 정도 걸려요...)

데이터란?

- □ 데이터의 정의
 - The quantities, characters, or symbols on which operations are performed by a computer, being stored and transmitted in the form of electrical signals and recorded on magnetic, optical, or mechanical recording media (Google)
- □ 데이터의 종류
 - 정형 데이터
 - _ 벡터 또는 행렬의 형태로 표현 가능한 데이터
 - Ex) 엑셀 데이터 (table), 그림
 - 비정형데이터
 - _ 그렇지 않은 데이터
 - Ex) 자연어

데이터란?

- □ 자료
 - 의미 없는 기록
- □ 정보
 - 의미 있는 자료
- □지식
 - 가치 있는 정보
- 미지혜
 - 패턴화된 지식

☐ TO WHOM?

'빅'데이터란?

□ 박데이터란 기존 데이터베이스 관리도구의 능력을 넘어서는 대량(수십 테라바이트)의 정형 또는 심지어 데이터 베이스 형태가 아닌 비정형의 데이터 집합조차 포함한 데이터로부터 가치를 추출하고 결과를 분석하는 기술이다. – 위키피디아

□ 데이터의 양(Volume), 데이터 입출력의 속도(Velocity), 데이터 종류의 다양성(Variety), 정확성(Veracity), 가변성(Variability)

□ 인공지능과는 다름

데이터 사이언티스트가 하는 5가지 업무

□ 데이터 사이언스의 5가지 순서

- 데이터 크롤링
- 웹 스크래핑
- API

- HADOOP
- SQL
- ERD
- Metadata
- Schema

- Python, R, Matlab
- 데이터마이닝 - 머신러닝/딥러닝
- Python, R, Matlab
- Tableu
- Spotfire

□ 데이터 사이언스 벤 다이어그램

데이터 사이언티스트가 하는 5가지 업무

□ 데이터 사이언스의 5가지 순서

□ 데이터 사이언스 벤 다이어그램

- □ 데이터 분석의 방법
 - 모델링
 - 머신러닝

- ☐ Classification
 - Voice/Face/Fingerprint/Iris/DNA/Signature recognition, Recommendation, Spam filter, Credit card fraud detection
- □ Regression
 - Loan application analysis, Marketing, Stock market prediction
- □ Clustering
 - Web-search, Document & information retrieval, Machine translation
- □ Dimension Reduction
- ☐ Strategy Learning
 - Game, Marketing
- Association
 - POS analysis

- □ Classification -1
 - Each given data has its own class or label
 - Once a query is given, the system should tell the class of the query
 - Example: Door gate Permitted Persons

Query:

Permitted or Not?

- □ Classification 2
 - A set of labeled data is given
 - Your program should find the boundary between labels
 - If a query is given, your program should answer the label

□ Regression

- \blacksquare A set of (\mathbf{x}, \mathbf{y}) 's is given. $(\mathbf{x} \text{ is a vector, y is a real number})$
- Your program should find the functional relation between x and y
- If a query, **x'**, is given, your program should answer y for **x'**

□ Clustering

- Unlabeled data is given.
- Your program should group the data (Finding hidden structure of data)
- If a query is given, your program should determine the group in which the query belongs to

- □ Dimension Reduction
 - A set of unlabeled data is given.
 - Your program should reduce the dimension of data by minimizing the loss of information

Find the projection line Remove other axises

□ Strategy Learning

- A game is given, but how to win is not known. You may know that you win or not at the end of game
- You program should learn how to win

☐ Association

- A set of items is given
- Your program should find items which appear together

t1: Beef, Chicken, Milk

t2: Beef, Cheese

t3: Cheese, Boots

t4: Beef, Chicken, Cheese

t5: Beef, Chicken, Clothes, Cheese, Milk

t6: Chicken, Clothes, Milk

t7: Chicken, Milk, Clothes

- □ Supervised Learning
 - Classification, Regression
 - All given data are labeled
- □ Semi-supervised Learning
 - Classification, Clustering
 - Some data is labeled and some are not
- □ Unsupervised Learning
 - Clustering, Dimension Reduction, Association
 - Data is not labeled
- Reinforcement Learning
 - Strategy Learning
 - Reward is given to your behaviors

- □ Parametric
 - A global model is used to describe data
 - Your program should estimate the parameters of the global model and answers based on the found model
- □ Semiparametric
 - A small number of local models are used to describe data
 - Your program should estimate the parameters of the local models and answers based on the found models
- □ Nonparametric
 - Non model based approach
 - Your program keeps all the given data and answer based on them
 - If a query is given, your program find a small number of closest data instances and answer by combining those
 - Aka lazy/memory-based/case-based/instance-based learning

- □ Non-meta (Ordinary) Learning
 - Methods to learn given data
- Meta Learning
 - Methods to learn how to learn
 - Boosting, Inductive transfer, ...

데이터 해석의 중요성

- □ 데이터 분석이란? DSS! (Decision Support System)
- □ 보기 좋은 떡이 맛도 좋다
 - 시각화 스킬은 데이터 분석에서 가장 중요함
 - 마케팅이 회사 수익의 30%를 올려주듯이 시각화 역시 설득력을 높여주는 좋은 수단
 - 데이터 시각화 분야는 아직 개척 중인 전도유망한 분야

데이터 분석을 위해 해야 하는 공부들

- ㅁ 수학
 - 선형대수/수치선형대수
 - 미분적분학
 - 수치최적화
 - 확률/통계
 - 해석학/위상수학
- □ 프로그래밍
 - Python, R, Matlab
- □ 영어 (제일 중요)

참조

- Mye Sohn Knowledge Engineering lecture
- ☐ JH, Lee Machine Learning lecture
- ☐ JS, Lee Data Mining lecture

